Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cells ; 11(15)2022 08 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1993938

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that play a prominent role in post-transcriptional gene regulation mechanisms in the brain tuning synaptic plasticity, memory formation, and cognitive functions in physiological and pathological conditions [...].


Asunto(s)
Depresores del Sistema Nervioso Central , MicroARNs , Enfermedades del Sistema Nervioso , Regulación de la Expresión Génica , Humanos , MicroARNs/metabolismo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Plasticidad Neuronal/fisiología
2.
Hosp Pract (1995) ; 50(3): 189-195, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1882942

RESUMEN

BACKGROUND: Several lines of evidence suggest that SARS-CoV-2 invasion of the central nervous system leads to meningitis and encephalopathy syndromes. Additionally, chronic alcoholics were found to be at a higher risk of developing mental health problems and serious neurological manifestations, if exposed to SARS-CoV-2 infection. METHODS: Herein, we studied RNA seq data from alcoholics' brain tissue and COVID-19 patient's brain tissue to identify the common differentially expressed genes. RESULTS: Overlap analysis depicted the expression of seven genes (GHRL, SLN, VGF, IL1RL1, NPTX2, PDYN, and RPRML) that were significantly upregulated in both groups. Along with these, protein-protein interaction analysis revealed 10 other key molecules with strong interactions with the aforementioned genes. CONCLUSIONS: Taken together with the functional effect of these genes, we suggest a strong molecular link between COVID-19-induced severities and neurological impairment in patients suffering from alcohol abuse disorder. These findings emphasize the importance of identifying chronic alcoholism as a risk factor for developing cognitive and memory impairment in COVID-19 patients.


Asunto(s)
Alcoholismo , COVID-19 , Enfermedades del Sistema Nervioso , Alcoholismo/complicaciones , Alcoholismo/genética , COVID-19/complicaciones , COVID-19/genética , Expresión Génica , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , SARS-CoV-2
3.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1715396

RESUMEN

Interferon-ß (IFN-ß) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-ß activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-ß interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-ß binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B-IFN-ß interaction. S100B monomerization increases its affinity to IFN-ß by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-ß and S100B (5-25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-ß activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases.


Asunto(s)
Interferón beta/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Animales , Células CHO , Calcio/metabolismo , Línea Celular Tumoral , Cricetulus , Humanos , Células MCF-7 , Enfermedades del Sistema Nervioso/metabolismo , Unión Proteica/fisiología
4.
Ann N Y Acad Sci ; 1507(1): 70-83, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1673249

RESUMEN

For many years, it was believed that the aging process was inevitable and that age-related diseases could not be prevented or reversed. The geroscience hypothesis, however, posits that aging is, in fact, malleable and, by targeting the hallmarks of biological aging, it is indeed possible to alleviate age-related diseases and dysfunction and extend longevity. This field of geroscience thus aims to prevent the development of multiple disorders with age, thereby extending healthspan, with the reduction of morbidity toward the end of life. Experts in the field have made remarkable advancements in understanding the mechanisms underlying biological aging and identified ways to target aging pathways using both novel agents and repurposed therapies. While geroscience researchers currently face significant barriers in bringing therapies through clinical development, proof-of-concept studies, as well as early-stage clinical trials, are underway to assess the feasibility of drug evaluation and lay a regulatory foundation for future FDA approvals in the future.


Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Congresos como Asunto/tendencias , Gerociencia/tendencias , Longevidad/fisiología , Informe de Investigación , Autofagia/fisiología , COVID-19/genética , COVID-19/metabolismo , COVID-19/mortalidad , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Gerociencia/métodos , Humanos , Metabolómica/métodos , Metabolómica/tendencias , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/terapia , Trasplante de Células Madre/métodos , Trasplante de Células Madre/tendencias
5.
PLoS One ; 17(1): e0262739, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1643279

RESUMEN

Human T-cell Leukemia Virus type-1 (HTLV-1) is an oncovirus that may cause two main life-threatening diseases including a cancer type named Adult T-cell Leukemia/Lymphoma (ATLL) and a neurological and immune disturbance known as HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). However, a large number of the infected subjects remain as asymptomatic carriers (ACs). There is no comprehensive study that determines which dysregulated genes differentiate the pathogenesis routes toward ATLL or HAM/TSP. Therefore, two main algorithms including weighted gene co-expression analysis (WGCNA) and multi-class support vector machines (SVM) were utilized to find major gene players in each condition. WGCNA was used to find the highly co-regulated genes and multi-class SVM was employed to identify the most important classifier genes. The identified modules from WGCNA were validated in the external datasets. Furthermore, to find specific modules for ATLL and HAM/TSP, the non-preserved modules in another condition were found. In the next step, a model was constructed by multi-class SVM. The results revealed 467, 3249, and 716 classifiers for ACs, ATLL, and HAM/TSP, respectively. Eventually, the common genes between the WGCNA results and classifier genes resulted from multi-class SVM that also determined as differentially expressed genes, were identified. Through these step-wise analyses, PAIP1, BCAS2, COPS2, CTNNB1, FASLG, GTPBP1, HNRNPA1, RBBP6, TOP1, SLC9A1, JMY, PABPC3, and PBX1 were found as the possible critical genes involved in the progression of ATLL. Moreover, FBXO9, ZNF526, ERCC8, WDR5, and XRCC3 were identified as the conceivable major involved genes in the development of HAM/TSP. These genes can be proposed as specific biomarker candidates and therapeutic targets for each disease.


Asunto(s)
Regulación de la Expresión Génica , Marcadores Genéticos , Infecciones por HTLV-I/complicaciones , Virus Linfotrópico T Tipo 1 Humano/genética , Leucemia-Linfoma de Células T del Adulto/patología , Enfermedades del Sistema Nervioso/patología , Máquina de Vectores de Soporte , Perfilación de la Expresión Génica , Infecciones por HTLV-I/genética , Infecciones por HTLV-I/metabolismo , Infecciones por HTLV-I/virología , Humanos , Leucemia-Linfoma de Células T del Adulto/etiología , Leucemia-Linfoma de Células T del Adulto/metabolismo , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo
6.
CNS Neurol Disord Drug Targets ; 21(3): 210-216, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1592276

RESUMEN

The coronavirus, also known as SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus-19), with its rapid rate of transmission, has progressed with a great impact on respiratory function and mortality worldwide. The nasal cavity is the promising gateway of SARS-CoV-2 to reach the brain via systemic circulatory distribution. Recent reports have revealed that the loss of involuntary process of breathing control into the brainstem that results in death is a signal of neurological involvement. Early neurological symptoms, like loss of smell, convulsions, and ataxia, are the clues of the involvement of the central nervous system that makes the entry of SARS-CoV-2 further fatal and life-threatening, requiring artificial respiration and emergency admission in hospitals. Studies performed on patients infected with SARS-CoV-2 has revealed three-stage involvement of the Central Nervous System (CNS) in the progression of SARS-CoV-2 infection: Direct involvement of CNS with headache, ataxia, dizziness, altered or impaired consciousness, acute stroke or seizures as major symptoms, peripheral involvement with impaired taste, smell, vision, and altered nociception, and skeletal muscle impairment that includes skeletal muscle disorders leading to acute paralysis in a particular area of the body. In the previous era, most studied and researched viruses were beta coronavirus and mouse hepatitis virus, which were studied for acute and chronic encephalitis and Multiple Sclerosis (MS). Although the early symptoms of SARS-CoV are respiratory pathogenesis, the differential diagnosis should always be considered for neurological perspective to stop the mortalities.


Asunto(s)
Encéfalo/metabolismo , COVID-19/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/virología , SARS-CoV-2/metabolismo , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Encéfalo/efectos de los fármacos , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
7.
Signal Transduct Target Ther ; 6(1): 406, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1532031

RESUMEN

Currently, SARS-CoV-2 has caused a global pandemic and threatened many lives. Although SARS-CoV-2 mainly causes respiratory diseases, growing data indicate that SARS-CoV-2 can also invade the central nervous system (CNS) and peripheral nervous system (PNS) causing multiple neurological diseases, such as encephalitis, encephalopathy, Guillain-Barré syndrome, meningitis, and skeletal muscular symptoms. Despite the increasing incidences of clinical neurological complications of SARS-CoV-2, the precise neuroinvasion mechanisms of SARS-CoV-2 have not been fully established. In this review, we primarily describe the clinical neurological complications associated with SARS-CoV-2 and discuss the potential mechanisms through which SARS-CoV-2 invades the brain based on the current evidence. Finally, we summarize the experimental models were used to study SARS-CoV-2 neuroinvasion. These data form the basis for studies on the significance of SARS-CoV-2 infection in the brain.


Asunto(s)
Encéfalo , COVID-19 , Enfermedades del Sistema Nervioso , SARS-CoV-2/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , COVID-19/complicaciones , COVID-19/metabolismo , COVID-19/patología , Humanos , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/virología
8.
Cells ; 10(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1502370

RESUMEN

Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.


Asunto(s)
Galectina 3/metabolismo , Enfermedades del Sistema Nervioso/patología , Neurogénesis , Animales , Encéfalo/metabolismo , Encéfalo/patología , COVID-19/metabolismo , COVID-19/patología , Movimiento Celular , Galectina 3/química , Galectina 3/genética , Humanos , Inflamación , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/patología , Enfermedades del Sistema Nervioso/metabolismo , Células-Madre Neurales/citología , Transducción de Señal
9.
J Neurosci ; 41(25): 5338-5349, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1282334

RESUMEN

Clinical reports suggest that the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS)-coronavirus-2 (CoV-2) has not only taken millions of lives, but has also created a major crisis of neurologic complications that persist even after recovery from the disease. Autopsies of patients confirm the presence of the coronaviruses in the CNS, especially in the brain. The invasion and transmission of SARS-CoV-2 in the CNS is not clearly defined, but, because the endocytic pathway has become an important target for the development of therapeutic strategies for COVID-19, it is necessary to understand endocytic processes in the CNS. In addition, mitochondria and mechanistic target of rapamycin (mTOR) signaling pathways play a critical role in the antiviral immune response, and may also be critical for endocytic activity. Furthermore, dysfunctions of mitochondria and mTOR signaling pathways have been associated with some high-risk conditions such as diabetes and immunodeficiency for developing severe complications observed in COVID-19 patients. However, the role of these pathways in SARS-CoV-2 infection and spread are largely unknown. In this review, we discuss the potential mechanisms of SARS-CoV-2 entry into the CNS and how mitochondria and mTOR pathways might regulate endocytic vesicle-mitochondria interactions and dynamics during SARS-CoV-2 infection. The mechanisms that plausibly account for severe neurologic complications with COVID-19 and potential treatments with Food and Drug Administration-approved drugs targeting mitochondria and the mTOR pathways are also addressed.


Asunto(s)
COVID-19/complicaciones , Enfermedades del Sistema Nervioso/virología , Neuronas/virología , Animales , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Humanos , Mitocondrias/metabolismo , Mitocondrias/virología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/metabolismo , SARS-CoV-2/patogenicidad , Serina-Treonina Quinasas TOR/metabolismo , Síndrome Post Agudo de COVID-19 , Tratamiento Farmacológico de COVID-19
10.
Cell Mol Neurobiol ; 42(1): 99-107, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1265525

RESUMEN

Mitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , ADN Mitocondrial/genética , Heteroplasmia/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/inmunología , Animales , COVID-19/complicaciones , COVID-19/metabolismo , Humanos , Inmunidad , Mitocondrias/metabolismo , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/metabolismo
11.
Front Immunol ; 12: 665300, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1226978

RESUMEN

The irruption of SARS-CoV-2 during 2020 has been of pandemic proportions due to its rapid spread and virulence. COVID-19 patients experience respiratory, digestive and neurological symptoms. Distinctive symptom as anosmia, suggests a potential neurotropism of this virus. Amongst the several pathways of entry to the nervous system, we propose an alternative pathway from the infection of the gut, involving Toll-like receptor 4 (TLR4), zonulin, protease-activated receptor 2 (PAR2) and zonulin brain receptor. Possible use of zonulin antagonists could be investigated to attenuate neurological manifestations caused by SARS-CoV-19 infection.


Asunto(s)
COVID-19/complicaciones , Haptoglobinas/metabolismo , Enfermedades del Sistema Nervioso/complicaciones , Precursores de Proteínas/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/virología , Encéfalo/metabolismo , Encéfalo/virología , COVID-19/metabolismo , COVID-19/virología , Proteínas del Sistema Complemento/metabolismo , Enfermedades Gastrointestinales/complicaciones , Enfermedades Gastrointestinales/metabolismo , Enfermedades Gastrointestinales/virología , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/virología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Receptor Toll-Like 4/metabolismo
12.
CNS Neurol Disord Drug Targets ; 21(3): 228-234, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1125178

RESUMEN

Increasing reports of neurological symptoms in COVID-19 patient's warrant clinicians to adopt and define the standardized diagnostic and managing protocols in order to investigate the linkage of neurological symptoms in COVID-19. Encephalitis, anosmia, acute cerebrovascular disease and ageusia are some of the emerging neurological manifestations which are reported in several cohort studies on hospitalized patients with COVID-19. Although the COVID-19 pandemic is primarily associated with infection of the respiratory tract system, but measures like lockdown and restricted physical movements to control the spread of this infection will certainly have neurobehavioural implications. Additionally, some of the patients with pre-existing neurological manifestations like epilepsy, Parkinson's and Alzheimer's disease are more prone to infection and demand extra care as well as improvised treatment. In this review, we have focused on the neurovirological clinical manifestations associated with the COVID-19 pandemic. Although the prevalence of neurovirological manifestations is rare increasing reports cannot be ignored and needs to be discussed thoroughly with respect to risk analysis and considerations for developing a management strategy. This also helps in defining the burden of neurological disorders associated with COVID-19 patients.


Asunto(s)
COVID-19/psicología , COVID-19/terapia , Trastornos Mentales/psicología , Trastornos Mentales/terapia , Enfermedades del Sistema Nervioso/psicología , Enfermedades del Sistema Nervioso/terapia , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/epidemiología , COVID-19/metabolismo , Control de Enfermedades Transmisibles/métodos , Control de Enfermedades Transmisibles/tendencias , Humanos , Trastornos Mentales/epidemiología , Trastornos Mentales/metabolismo , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/metabolismo , Medición de Riesgo/métodos , Medición de Riesgo/tendencias , SARS-CoV-2/metabolismo
13.
CNS Neurol Disord Drug Targets ; 21(3): 246-258, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1088858

RESUMEN

BACKGROUND: The current ongoing COVID-19 pandemic has compelled us to scrutinize major outbreaks in the past two decades, Severe Acute Respiratory Syndrome (SARS), in 2002, and Middle East Respiratory Syndrome (MERS), in 2012. We aimed to assess the associated neurological manifestations with SARS CoV-2 infection. METHODS: In this systematic review, a search was carried out by key-electronic databases, controlled vocabulary, and indexing of trials to evaluate the available pertinent studies which included both medical subject headings (MeSH) and advanced electronic databases comprising PubMed, Embase, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL). Peer-reviewed studies published in English and Spanish were considered, which reported data on the neurological associations of individuals with suspected or laboratory-confirmed SARS-CoV-2 infection. Outcomes were nervous signs or symptoms, symptom severity, and diagnoses. RESULTS: Our search identified 45 relevant studies, with 21 case reports, 3 case series, 9 observational studies, 1 retrospective study, 9 retrospective reviews, and 2 prospective reviews. This systematic review revealed that most commonly reported neuronal presentations involved headache, nausea, vomiting and muscular symptoms like fibromyalgia. Anosmia and ageusia, defects in clarity or sharpness of vision (error in visual acuity), and pain may occur in parallel. Notable afflictions in the form of anxiety, anger, confusion, post-traumatic stress symptoms, and post-intensive care syndrome were observed in individuals who were kept in quarantine and those with long-stay admissions in healthcare settings. SARS CoV-2 infection may result in cognitive impairment. Patients with more severe infection exhibited uncommon manifestations, such as acute cerebrovascular diseases (intracerebral haemorrhage, stroke), rhabdomyolysis, encephalopathy, and Guillain-Barré syndrome. CONCLUSION: SARS-CoV-2 patients experience neuronal presentations varying with the progression of the infection. Healthcare professionals should be acquainted with the divergent neurological symptoms to curb misdiagnosis and limit long-term sequelae. Health-care planners and policymakers must prepare for this eventuality, while the ongoing studies increase our knowledge base on acute and chronic neurological associations of this pathogen.


Asunto(s)
Encéfalo/metabolismo , COVID-19/epidemiología , COVID-19/metabolismo , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/metabolismo , Encéfalo/virología , COVID-19/diagnóstico , Humanos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/virología , Estudios Observacionales como Asunto/métodos , Estudios Retrospectivos , SARS-CoV-2/metabolismo
14.
Neurosci Lett ; 742: 135533, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: covidwho-968411

RESUMEN

COVID-19 has shaken the core of the medical health system. The wide spread death and destruction of patients and health care workers in unprecedented in the modern era. While the pulmonary complications have received the most attention, it is the neurological manifestations that are disabling, persistent and common in patients infected with SARS-CoV-2. The entire neuro-axis can be involved resulting in a wide variety of manifestations. While the pathophysiology is not well understood, many of the clinical manifestations seem to be immune mediated. The socio-economic consequences of these complications are dire. These unprecedented times also calls for unprecedented action. Novel clinical trial designs need to be considered so that multiple agents can be studied. In the context of these clinical trials, disease pathophysiology and standardized batteries and biological markers for patient assessment need to be developed.


Asunto(s)
Encéfalo/patología , COVID-19/complicaciones , COVID-19/patología , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/patología , COVID-19/metabolismo , Humanos , Enfermedades del Sistema Nervioso/metabolismo
15.
Neurosci Lett ; 742: 135531, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: covidwho-966786

RESUMEN

Multiple neuro-ophthalmological manifestations have been described in association with COVID-19. These symptoms and signs may be the result of a range of pathophysiological mechanisms throughout the course from acute illness to recovery phase. Optic nerve dysfunction, eye movement abnormalities and visual field defects have been described.


Asunto(s)
COVID-19/complicaciones , Síndrome de Liberación de Citoquinas/etiología , Enfermedades del Sistema Nervioso/etiología , Trastornos de la Visión/etiología , COVID-19/diagnóstico , COVID-19/metabolismo , Síndrome de Liberación de Citoquinas/diagnóstico , Síndrome de Liberación de Citoquinas/metabolismo , Humanos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/metabolismo , Trastornos de la Visión/diagnóstico , Trastornos de la Visión/metabolismo
16.
J Neurosci Res ; 99(3): 750-777, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-938490

RESUMEN

Without protective and/or therapeutic agents the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection known as coronavirus disease 2019 is quickly spreading worldwide. It has surprising transmissibility potential, since it could infect all ages, gender, and human sectors. It attacks respiratory, gastrointestinal, urinary, hepatic, and endovascular systems and can reach the peripheral nervous system (PNS) and central nervous system (CNS) through known and unknown mechanisms. The reports on the neurological manifestations and complications of the SARS-CoV-2 infection are increasing exponentially. Herein, we enumerate seven candidate routes, which the mature or immature SARS-CoV-2 components could use to reach the CNS and PNS, utilizing the within-body cross talk between organs. The majority of SARS-CoV-2-infected patients suffer from some neurological manifestations (e.g., confusion, anosmia, and ageusia). It seems that although the mature virus did not reach the CNS or PNS of the majority of patients, its unassembled components and/or the accompanying immune-mediated responses may be responsible for the observed neurological symptoms. The viral particles and/or its components have been specifically documented in endothelial cells of lung, kidney, skin, and CNS. This means that the blood-endothelial barrier may be considered as the main route for SARS-CoV-2 entry into the nervous system, with the barrier disruption being more logical than barrier permeability, as evidenced by postmortem analyses.


Asunto(s)
COVID-19/complicaciones , COVID-19/metabolismo , Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Sistema Nervioso Periférico/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/virología , COVID-19/transmisión , Sistema Nervioso Central/virología , Humanos , Enfermedades del Sistema Nervioso/virología , Nervio Olfatorio/metabolismo , Nervio Olfatorio/virología , Sistema Nervioso Periférico/virología
17.
Pain ; 161(11): 2494-2501, 2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-878868

RESUMEN

SARS-CoV-2 has created a global crisis. COVID-19, the disease caused by the virus, is characterized by pneumonia, respiratory distress, and hypercoagulation and can be fatal. An early sign of infection is loss of smell, taste, and chemesthesis-loss of chemical sensation. Other neurological effects of the disease have been described, but not explained. It is now apparent that many of these neurological effects (for instance joint pain and headache) can persist for at least months after infection, suggesting a sensory neuronal involvement in persistent disease. We show that human dorsal root ganglion (DRG) neurons express the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 at the RNA and protein level. We also demonstrate that SARS-CoV-2 and coronavirus-associated factors and receptors are broadly expressed in human DRG at the lumbar and thoracic level as assessed by bulk RNA sequencing. ACE2 mRNA is expressed by a subset of nociceptors that express MRGPRD mRNA, suggesting that SARS-CoV-2 may gain access to the nervous system through entry into neurons that form free nerve endings at the outermost layers of skin and luminal organs. Therefore, DRG sensory neurons are a potential target for SARS-CoV-2 invasion of the peripheral nervous system, and viral infection of human nociceptors may cause some of the persistent neurological effects seen in COVID-19.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/metabolismo , Ganglios Espinales/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Nociceptores/metabolismo , Peptidil-Dipeptidasa A/biosíntesis , Neumonía Viral/metabolismo , Glicoproteína de la Espiga del Coronavirus/biosíntesis , Adulto , Anciano , Enzima Convertidora de Angiotensina 2 , COVID-19 , Infecciones por Coronavirus/genética , Femenino , Ganglios Espinales/virología , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/virología , Pandemias , Peptidil-Dipeptidasa A/genética , Neumonía Viral/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
18.
J Neurol Neurosurg Psychiatry ; 92(2): 218-220, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-873577
19.
Mol Neurobiol ; 58(1): 106-117, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-746880

RESUMEN

The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)-as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A2 isoforms, including cytosolic phospholipase A2 (cPLA2). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metabolized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-19. (1) They inhibit PLA2. (2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the activity of lysosomal enzymes. (3) They may affect the expression and Fe2+/H+ symporter activity of iron transporters such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA2 isoforms. Inhibition of cPLA2 impairs an early step of coronavirus replication in cell culture. In addition, a secretory PLA2 (sPLA2) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for neurovascular disorders such as stroke and vascular dementia.


Asunto(s)
Antimaláricos/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/complicaciones , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/etiología , SARS-CoV-2 , Animales , Antimaláricos/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , COVID-19/metabolismo , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Resultado del Tratamiento
20.
J Neurosci Res ; 98(12): 2376-2383, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-738348

RESUMEN

Manifestation of neurological symptoms in certain patients of coronavirus disease-2019 (COVID-19) has warranted for their virus-induced etiogenesis. SARS-CoV-2, the causative agent of COVID-19, belongs to the genus of betacoronaviruses which also includes SARS-CoV-1 and MERS-CoV; causative agents for severe acute respiratory syndrome (SARS) in 2002 and Middle East respiratory syndrome (MERS) in 2012, respectively. Studies demonstrating the neural invasion of SARS-CoV-2 in vivo are still scarce, although such characteristics of certain other betacoronaviruses are well demonstrated in the literature. Based on the recent evidence for the presence of SARS-CoV-2 host cell entry receptors in specific components of the human nervous and vascular tissue, a neural (olfactory and/or vagal), and a hematogenous-crossing the blood-brain barrier, routes have been proposed. The neurological symptoms in COVID-19 may also arise as a consequence of the "cytokine storm" (characteristically present in severe disease) induced neuroinflammation, or co-morbidities. There is also a possibility that, there may be multiple routes of SARS-CoV-2 entry into the brain, or multiple mechanisms can be involved in the pathogenesis of the neurological symptoms. In this review article, we have discussed the possible routes of SARS-CoV-2 brain entry based on the emerging evidence for this virus, and that available for other betacoronaviruses in literature.


Asunto(s)
Betacoronavirus/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Infecciones por Coronavirus/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Nervio Olfatorio/metabolismo , Neumonía Viral/metabolismo , Animales , Barrera Hematoencefálica/virología , Encéfalo/virología , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/transmisión , Humanos , Enfermedades del Sistema Nervioso/etiología , Nervio Olfatorio/virología , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/transmisión , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA